વિધેય $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ નો પ્રદેશગણ મેળવો.

  • A

    $R$

  • B

    $[0,6]$

  • C

    $[-6,6]$

  • D

    $[-3,3]$

Similar Questions

વિધેય $f(x) =  - 1 + \frac{2}{{{2^x}^2 + 1}}$ ની મહત્તમ કિમત ........... થાય

જો $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ હોય તો 

જો વિધેય $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ નો પ્રદેશ $(\alpha, \beta) \cup(\gamma, \delta]$ હોય, તો $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=......$

  • [JEE MAIN 2023]

જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.

  • [IIT 2001]

વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .

વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .

  • [JEE MAIN 2013]